Fractional Sub-Equation Method and its Applications to the Space–Time Fractional Differential Equations in Mathematical Physics
نویسندگان
چکیده
منابع مشابه
A new fractional sub-equation method for solving the space-time fractional differential equations in mathematical physics
In this paper, a new fractional sub-equation method is proposed for finding exact solutions of fractional partial differential equations (FPDEs) in the sense of modified Riemann-Liouville derivative. With the aid of symbolic computation, we choose the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) equation in mathematical physics with a source to illustrate the validity a...
متن کاملThe Improved Fractional Sub-equation Method and Its Applications to Nonlinear Fractional Partial Differential Equations
The fractional derivatives in the sense of modified Riemann-Liouville derivative and the improved fractional sub-equation method are employed for constructing the exact solutions of nonlinear fractional partial differential equations. By means of this method, the space-time fractional generalized Hirota-Satsuma coupled Kortewegde Vries equations are successfully solved. As a result, three types...
متن کاملThe Modified Fractional Sub-equation Method and Its Applications to Nonlinear Fractional Partial Differential Equations
It is well known that fractional differential equations appeared more and more frequently in different research areas, such as fluid mechanics, viscoelasticity, biology, physics, engineering and other areas of science [1-30]. Considerable attention have been spent in recent years to develop techniques to look for solutions of nonlinear fractional partial differential equations (NFPDEs). Consequ...
متن کاملa new fractional sub-equation method for solving the space-time fractional differential equations in mathematical physics
in this paper, a new fractional sub-equation method is proposed for finding exact solutions of fractional partial differential equations (fpdes) in the sense of modified riemann-liouville derivative. with the aid of symbolic computation, we choose the space-time fractional zakharov-kuznetsov-benjamin-bona-mahony (zkbbm) equation in mathematical physics with a source to illustrate the validity a...
متن کاملApplications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations
In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: British Journal of Mathematics & Computer Science
سال: 2013
ISSN: 2231-0851
DOI: 10.9734/bjmcs/2013/2908